D1-D2 protein degradation in the chloroplast. Complex light saturation kinetics.

نویسندگان

  • M A Jansen
  • A K Mattoo
  • M Edelman
چکیده

The D1 and D2 proteins of the photosystem II (PSII) reaction center are stable in the dark, while rapid degradation occurs in the light. Thus far, a quantitative correlation between degradation and photon fluences has not been determined. In Spirodela oligorrhiza, D1-D2 degradation increases with photon flux. We find that kinetics for D2 degradation mirror those for D1, except that the actual half-life times of the D2 protein are about three times larger than those of the D1. The degradation ratio, D2/D1, is fluence independent, supporting the proposal [Jansen, M.A.K., Greenberg, B.M., Edelman, M., Mattoo, A.K. & Gaba, V. (1996), Photochem. Photobiol. 63, 814-817] that degradation of the two proteins is coupled. It is commonly conceived that D1 degradation is predominantly associated with photon fluences that are supersaturating for photosynthesis. We now show that a fluence as low as 5 mumol.m-2.s-1 elicited a reaction constituting > 25% of the total degradation response, while > 90% of the degradation potential was attained at intensities below saturation for photosynthesis (approximately 750 mumol.m-2.s-1). Thus, in intact plants, D1 degradation is overwhelmingly associated with fluences limiting for photosynthesis. D1 degradation increases with photon flux in a complex, multiphasic manner. Four phases were uncovered over the fluence range from 0-1600 mumol.m-2.s-1. The multiphasic saturation kinetics underscore that the D1 and D2 degradation response is complex, and emanates from more than one parameter. The physiological processes associated with each phase remain to be determined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay between N-terminal methionine excision and FtsH protease is essential for normal chloroplast development and function in Arabidopsis.

N-terminal methionine excision (NME) is the earliest modification affecting most proteins. All compartments in which protein synthesis occurs contain dedicated NME machinery. Developmental defects induced in Arabidopsis thaliana by NME inhibition are accompanied by increased proteolysis. Although increasing evidence supports a connection between NME and protein degradation, the identity of the ...

متن کامل

Nuclear mutations specifically affect the synthesis and/or degradation of the chloroplast-encoded D2 polypeptide of photosystem II in Chlamydomonas reinhardtii.

To study the interaction of the nuclear and chloroplast genomes in the biogenesis of the photosynthetic apparatus, nuclear mutants of Chlamydomonas reinhardtii deficient in photosystem II (PSII) activity were analyzed. Two independently-isolated, allelic nuclear mutants show a pleiotropic reduction in a set of functionally related PSII polypeptides. Immunoblot analysis reveals that the two muta...

متن کامل

Slow degradation of the d1 protein is related to the susceptibility of low-light-grown pumpkin plants to photoinhibition.

Photoinhibition of photosystem II (PSII) electron transport and subsequent degradation of the D1 protein were studied in pumpkin (Cucurbita pepo L.) leaves developed under high (1000 mumol m(-2) s(-1)) and low (80 mumol m(-2) s(-1)) photon flux densities. The low-light leaves were more susceptible to high light. This difference was greatly diminished when illumination was performed in the prese...

متن کامل

GTP bound to chloroplast thylakoid membranes is required for light-induced, multienzyme degradation of the photosystem II D1 protein.

Even though light is the driving force in photosynthesis, it also can be harmful to plants. The water-splitting photosystem II is the main target for this light stress, leading to inactivation of photosynthetic electron transport and photooxidative damage to its reaction center. The plant survives through an intricate repair mechanism involving proteolytic degradation and replacement of the pho...

متن کامل

Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana.

The use of mass spectrometry to characterize the phosphorylome, i.e. the constituents of the proteome that become phosphorylated, was demonstrated using the reversible phosphorylation of chloroplast thylakoid proteins as an example. From the analysis of tryptic peptides released from the surface of Arabidopsis thylakoids, the principal phosphoproteins were identified by matrix-assisted laser de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of biochemistry

دوره 260 2  شماره 

صفحات  -

تاریخ انتشار 1999